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LETTER TO THE EDITOR 

Large-cell renormalisation and systems of dimensionality 
larger than the upper marginal dimension 

Hisao Nakanishi 
Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, 
USA 

Received 1 November 1983 

Abstract. A recent argument dismissing the applicability of large-cell renormalisation 
schemes to systems of dimensionality d larger than the upper marginal dimension d, is 
critically discussed. In this connection, new large-cell renormalisation results for the random 
walk for d = 3 and 4 are presented which indicate convergence to the correct results. 

A recent argument by Sahimi and Jerauld (1983) on the inapplicability of large-cell 
renormalisation for d > d, appears not to be limited to the random walk but to include 
‘critical’ or scale invariant properties of all systems. They argued: (a) large cell 
renormalisation with the extrapolation of cell size b + 03 is equivalent to finite-size 
scaling; (b) finite-size scaling fails for d > d,; and thus large-cell renormalisation must 
necessarily fail for d > d,. Specifically, they discussed the Flory exponent v of the 
(unconstrained) random walks in d dimensions and cited as supporting evidence: (c) 
the trend of the cell-renormalisation estimates of v decreasing away from the exact 
value of 1 as b increases in d = 3 and 4. 

I shall start with the discussion of statement (b). To support the statement, Sahimi 
and Jerauld cite BrCzin (1982) and a singularity in the scaling function found by him. 
However, it is important to understand exactly what aspect of finite-size scaling fails 
for d > d, because of the onset of such a singularity. In particular, we note that the 
said singularity is now well known to be due to a ‘dangerous’ irrelevant variable (Fisher 
1973), and a generalised scaling form remains valid. 

To be specific let us consider the n-vector model where d,=4. Thus allowing for 
an irrelevant variable U ,  we have a general scaling statement (Fisher 1973), 

PL(t) = POo(t)f(L/tOo(t); u/L”’”), (1)  
where, for d > 4, 0 = t( d - 4) is the leading correction-to-scaling exponent at the 
Gaussian fixed point and P( t )  is a general, critical property with subscript L referring 
to a finite system and 00 referring to the infinite, Gaussian system. If u could be set 
equal to zero in the expression (l), then we would recover the usual finite-size scaling 
form (albeit with the Gaussian, and not necessarily mean field, exponents). however, 
for d > d,, U is normally a ‘dangerous’ irrelevant variable which may make f ( x ;  z )  
singular as z + 0. In general, we consider two different limits: (A) x + CO, z + 0, and 
(B) x + O ,  z+O. 

In the limit (A), the effect of finite-size is not present and PL( t) + P,,(t) where 
Po(t)  denotes the infinite volume limit of P with the mean field exponents. In order 
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for this to hold, f ( x ;  z )  - xUzb where a, b are such that the L-dependence is cancelled 
and t-dependence reduces to the mean-field case. For example, for the specific heat, 
a = 4- d, b = -1, and for the susceptibility a = b = 0. In either case, the deviation of 
Pr( t )  from Po( f )  should be asymptotically small. 

In case (B), we again have f ( x ;  z )  - xa‘zb’ ;  however, we should now have no 
residual f-dependence. This requirement fixes a ’ ,  but the value of 6’ is not obvious 
and in general has to be calculated explicitly. For the case of the susceptibility (in the 
totally finite geometry), the calculation of BrCziii (1982) indicates b’ = -4. Thus 

X L (  T,) - L2 x L(d-4)/2, (2) 

which is part of his equation (59). The so-called ‘failure’ of finite-size scaling refers 
to the presence of the correction factors, such as L(d-4)/2 in equation (2) that arise 
from the singular behaviour of the scaling function?. 

Now, going back to the scaling statement ( l ) ,  we see that the shift in the critical 
point is in general given by 

t,(L) - L-’/”f( u/L”/”). (3) 

If one wishes to obtain the behaviour of the shift as a function of L, the question is 
whether f (  z )  has a singular behaviour as z + 0. For the sake of argument, suppose it 
did, and let f ( z ) - z C .  Thus, if c>O, x , ( L ) ~ L f , ( L ) ” + O  as L+m, while if c<O, 
x,(L) + 00 as L+ 00. Hence, c > 0 corresponds to case (B) for t in the neighbourhood 
of t,(L), and c < 0 corresponds to case (A). 

In the first case, I have already argued that there is asymptotically no f-dependence 
for PL(t) .  Since the neighbourhood of t,(L) is the region of sharpest t-dependence, 
this leads to a contradiction. In the second case ( c  < 0), the argument is a bit more 
subtle. First, if the shifted critical point is, say, a true divergence (such as for the 
susceptibility of an Ising system with two or more infinite dimensions), then this 
possibility is also clearly ruled out. This is because PL( f , (L ) )  is divergent while Po( t,(L)) 
is non-singular and at the same time in case (A) the deviation of P L ( f )  from Po(?) 
should be asymptotically small. Secondly, if the shifted ‘critical’ point is, say, a rounded 
maximum (such as for a totally finite system), similar arguments can be applied to the 
derivatives of P L ( t ) ,  comparing these to the derivatives of P, ( t ) ,  at f = t,(L) as L+ CO. 

In general, in case (A), PL( t )  must behave asymptotically likePo( f ) ,  but this is impossible 
at t = tc(L) .  Thus, the case c < 0 also leads to a contradiction. Hence, I argue that 
f ( z )  does not have a singularity, in contrast to f ( x ;  z )  of equation ( l ) ,  and 

t,(L) - (constant)L-’/v. (4) 

Therefore, the finite-size scaling of the relevant, thermal variable is unaltered. 
Similarly, the fluctuation in measured values of f , (L)  should also scale as (con- 
stant)L-””. Thus, finite-size scaling is violated for d > d, only in a very specific sense 
(cf equation (2)).  

A consistency check on equation (4) can be made based on the work of Fisher ef 
a! ( 1973). They used finite-size scaling arguments which essentially incorporate$ 

t This mechanism can also be invoked to explain why the fractal dimension of the percolating cluster (at 
p,) remains 4 for d > d, = 6 (Aharony et a1 1983; see also Alexander et a1 1984). 
t Fisher er a1 (1973) in fact used the relation 0 = l / v  where 8 is the ‘rounding’ exponent (Fisher 1972). 
However, an extension to their arguments by replacing i ( a t - t c ( L ) )  by t in the spirit of equation (1) also 
identifies 8 with the ‘shift’ exponent (Fisher 1972). 
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equation (4) and found a scaling law for the helicity modulus exponent U, 

v = 2-  a - 2u,  

for all d. Equation ( 5 )  is consistent with all known results, and in particular, for the 
ideal Bose gas and spherical model for d > 4, we have the exact values, 

u = l ,  a =o, y = l  2. 

Because of the specific sense of the ‘failure’ of finite-size scaling for d > d,, it also 
becomes imperative to clarify statement (a) of Sahimi and Jerauld (1983): what is the 
precise relationship between large-cell renormalisation and finite-size scaling? 
Unfortunately, the answer to this question is not known, and evidently it must depend 
on what particular large-cell scheme is used. The only known connection is between 
a hypothetically exuct renormalisation and some form of finite-size scaling (BrCzin 
1982, Suzuki 1977). Even this type of connection requires certain further assumptions 
not originally needed for renormalisation (Privman 1983). 

Sahimi and Jerauld (1983) claim that Reynolds et a1 (1980) have shown the 
‘equivalence’ of the large-cell approach to finite-size scaling. Let us consider this 
point more carefully. In their study of the percolation problem, Reynolds et a1 (1980) 
made an observation that their eigenvalue A b  and the fluctuation in the measured value 
of p , ,  (+b ( ( p , ( b )  - (p,(  b)>)2)Y’ appear to satisfy asymptotically for large b 

Ab - (constant)/ Vb.  (7) 
On the other hand, their large-cell renormalisation can be written as 

where the second term must vanish as b -$a for their scheme to give correct U. If we 
assume f ( b )  -constant, then (7) and (8) would imply finite-size scaling for crb:  

(Tb - (constant) b-’/”. (9) 
Thus, the two assumptions together do imply a pum’culur form of finite-size scalingt; 
however, equation (9) is a type of finite-size scaling for the percolation analogue of 
the thermal variable, p ,  which we have already argued does not ‘fail’ even for d > d,. 
In addition, even if equation (9) did fail, it could be due to the failure of equation (7) 
or to the assumption f (  b )  -constant. (In particular, behaviour such as f( b )  - In In b 
would alter (9) without invalidating the renormalisation scheme.) 

Lastly, I shall present some new numerical results on the random walk in d = 3 
and 4 and show the reversal of the initial trend observed by Sahimi and Jerauld 
(1983) (statement (c)) which evidently helped convince them of their conclusion. Their 
cell renormalisation consists of counting all spanning walks (of lengths less than a 
certain prescribed limit) starting from a corner site in the hypercubic cell. Thus, they 
have in general 

K‘=C cnKn, 
n 

where c, is the number of such walks of n steps and K is the step fugacity. This 

t In a more superficial sense, equation (8) alone with the assumption of f(b)-constant gives a relation 
resembling finite-size scaling: Ab - (constant) b”“. However, to establish a true connection with finite-size 
scaling, one must relate A, to a physical quantity as Reynolds et a1 (1980) have done for pescolation by 
equation (7). 
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method was developed by Family and Gould (1983) and already described by Gould 
et a1 (1983), and like the renormalisation of some other models discussed there, it 
becomes computationally unfeasible even for a relatively small cell size b. In this case, 
however, this problem is trivially avoided by rewriting equation (10) as 

R'lz  = E  ( c , / z" )K" ,  
n 

where z is the lattice coordination number and R = zK, K' zK' are the kinetic step 
fugacities introduced by Nakanishi and Family (1984b). Once this is done, each 
coefficient in equation (1 1) can be estimated by Monte Carlo sampling, and this makes 
computation for much larger b quite feasible. 

My estimates obtained by this method (using the Sahimi-Jerauld prescription for 
the length cutoff) are shown in table 1 for d = 3 and table 2 for d = 4. In either case, 
the reversal of the initial trend is quite plainly observable. Random walks can be 
considered as a growth process (as well as an 'equilibrium' phenomenon), and indeed 
this sort of non-monotonic convergence appears to be quite general for many kinetic 

Table 1. Cell renormalisation estimates of v and the connective constant p for the random 
walk in d = 3. The results for cell sizes b = 2,.  . . , 5  were calculated by Sahimi and Jerauld 
(1983) from their closed-form recursion relations (indicated by t ) .  Error bars indicate 
one standard deviation. 

b 2  3 4 5 10 20 30 50 

p 4.1356t 4.7619t 5.0890t 5.1312t 5.7371 5.904* 5.949* 5.979* 
4.154* 0.01 lb O.OIOb 0.008' 0.003d 
0.016" 

a Based on three data sets totalling 5 x lo5 (spanning and non-spanning) walks. 
Based on five data sets totalling 5 X lo6 walks. 
Based on seven data sets totalling 1.65 X lo7 walks. 
Based on five data sets totalling 5 X lo7 walks. 

Table 2. Cell renormalisation estimates of v and p for the random walk in d = 4 .  The 
estimates for v for b = 2, 3 were given by Sahimi and Jerauld (1983) (indiated by t) while 
the connective constant p for b = 2 is computed from their recursion relation. Error bars 
indicate one standard deviation. 

b 2  3 10 15 20 

U 0.48131 0.4438t 0.448*0.012b 0.451 *O.OIOc 0.465*0.010' 
0.4815 *0.0004" 

p 5.3883 - 7.581 *0.034b 7.773*0.015' 7.845*0.015' 
5.389*0.005' 

a Based on three data sets totalling 1.2x lo6 (spanning and non-spanning) walks 
Based on five data sets totalling 5 x lo6 walks. 
Based on three data sets totalling 5 X lo7 walks. 
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growth processes (Nakanishi and Family 1984b). This may indicate some structural 
crossover at intermediate length scales, and may possibly hold a key to understanding 
these growth processes. 

In summary, I have presented a critique of the argument that large-cell renormalisa- 
tion is invalid for d > d,. The conclulsion is that the meth6d is still valid for d > d, as 
long as it does not reduce to the use of finite-size scaling to calculate certain properties 
of the scaling function which are affected by the dangerous singularity found by BrCzin 
(1982). In particular, the calculation of the correlation length exponent v should be 
valid. I demonstrate this explicitly by large-cell renormalisation on the random walk 
for d = 3 ,4  which show a reversal of the trend cited by Sahimi and Jerauld (1983) as 
evidence for the claim that the method failed. 

I am grateful to Woods Halley and John Cardy for useful discussions and critical 
reading of the manuscript. This material is based upon research supported in part by 
the National Science Foundation under Grant No PHY77-27084, supplemented by 
funds from the National Aeronautics and Space Administration. 
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